

FINAL PROJECT REPORT # 00064858

GRANT: DTRT13-G-UTC45 Project Period: 11/1/18 – 12/31/19

Enhancing Performance of Fiber-Reinforced Concrete for Construction and Repair

Participating Consortium Member: Missouri University of Science and Technology

Authors: Kamal Khayat, PhD, P.Eng Missouri University of Science and Technology

RE-CAST: REsearch on Concrete Applications for Sustainable Transportation *Tier 1 University Transportation Center*

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation's University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. RECAST UTC # 00064858	2. Government	Accession No.	3. Recipient's Catalog	No.			
4. Title and Subtitle			5. Report Date				
Enhancing Performance of Fiber	-Reinforced Cor	ncrete for	January 2020				
Construction and Repair			6. Performing Organiz	zation Code:			
7. Author(s)			8. Performing Organiz	zation Report No.			
Kamal Khayat			Project # 00064858	-			
9. Performing Organization N	ame and Addre	ess	10. Work Unit No.				
RE-CAST – Missouri University	y of Science and	Technology					
500 W. 16 th St., 223 ERL			11. Contract or Grant	No.			
Rolla, MO 65409-0710			USDOT: DTRT13-G-UTC45				
12. Sponsoring Agency Name	and Address		13. Type of Report and Period				
Office of the Assistant Secretary	for Research an	d Technology	Covered:				
U.S. Department of Transportati	on		Final Report				
1200 New Jersey Avenue, SE			Period: 11/1/18 – 12/31/	/19			
Washington, DC 20590			14. Sponsoring Agency	y Code:			
15. Supplementary Notes							
The investigation was conducted	l in cooperation	with the U.S.De	partment of Transportati	on.			
16. Abstract							
The overarching purpose of this res	earch is developm	ent of knowledge	and a novel technique to en	nhance properties of			
Eco-Bridge-Crete, FR-SCC and FR	-SWC for higher	crack resistance ar	id improved flexural proper	rties in construction			
and repair by taking advantage of h	ybrid fibers, chem	fical admixtures (s)	hrinkage reducing agents a	nd expansive			
agents) and lightweight sand. A bin	ary or ternary systematical	em of EA, SKA a	nd L w S with selected liber	tures. The			
incorporation of fibers with EA SR	A and I WS can i	properties and du	al properties and help to rer	luce a portion of			
steel reinforcement bars in flexural	members or reduc	thickness of ren	air overlays without compr	omising flexural			
strength/toughness and crack resist	ance. The selected	mixtures will be u	used in large-scale member	s to assess their			
structural performance in construct	ion and repair.						
17. Key Words	^	18. Distribution	n Statement				
Fiber-Reinforced Concrete; Con	struction;	No restrictions.	This document is available	ole to the public.			
Repair				-			
19. Security Classification (of	this report) 20	Security Class					
		. Security Class	sification (of this page)	21. No of Pages			

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized.

Enhanced Performance of Fiber-Reinforced Concrete for Construction and Repair

Progress Report – 12/31/2019

Principal Investigator (PI): Kamal H. Khayat, Ph.D., P.Eng.

1. Work currently underway

The work in progress during this reporting period includes evaluating the effect of fiber characteristics on the three selected Eco-Bridge-Crete mixtures from the previous Task (Task I-A). Fresh properties, compressive and flexural strengths, modulus of elasticity, as well as drying shrinkage, restrained expansion, restrained shrinkage, and restrained plastic shrinkage of the optimized Eco-Bridge-Crete mixtures with the three types of fibers used at two contents are being measured.

2. Activities and accomplishments during this reporting period

2.1 Task I-A: Performance of binary or ternary systems of EA, SRA, LWS on Eco-Bridge-Crete (100% completed)

The purpose of Task I-A of the research was to develop a binary or ternary system of EA, SRA, and LWS with selected portion of fiber to obtain optimum performance for Eco-Bridge-Crete. Three mixtures were selected based on the target performance, which included fresh properties, drying shrinkage, and compressive strength. The fiber type and content were maintained constant throughout this task. TUF-Strand supermix 41 synthetic fiber at a constant ratio of 0.5% was used. **Table 1** shows the experimental program of Task I-A. In this Task, a total of 102 cylindrical specimens (4"x8"), and 51 drying shrinkage specimens (11.25"x3"x3") of Eco-Bridge-Crete were cast.

Concrete property	No. of Specimens	Tests
	*	Unit weight (ASTM C 138)
Workability	*	Air volume (ASTM C 173)
	*	Slump
Mechanical properties	102	Compressive strength, N=6 (ASTM C 39), 28, 56 days
Volume change	51	Drying shrinkage, N=3 (ASTM C 157)
Total	153	

2.1.1 Materials and Mixing Procedure

In order to prepare the concrete mixtures for Task I-A, the following materials have been used. Type I/II cement, Class C fly ash, ground granulated blast-furnace slag (GGBS), 1 in. minus coarse aggregate (1" Dolo Riverstone Quarry), 3/8 in. minus coarse aggregate (CapitCoInc coarse aggregate), river sand, lightweight sand (LWS), CONEX expansive agent (EA), EUCON SRA-XT shrinkage reducing admixture (SRA), PLASTOL 6400 high range water reducer (HRWR), EUCON AIR MIX air-entrained agent (AEA), as well as TUF-Strand supermix 41 synthetic fiber. **Table 2** presents properties of the sand and

LWS, including specific gravity (SSD SG), oven-dry specific gravity (OD SG), and saturated surface dry (SSD) absorption.

	SSD SG	OD SG	SSD Absorption
Sand	2.58	2.52	2.24
LWS	1.83	1.48	23.46

	Table	2.	Sand	and	LWS	pro	perties
--	-------	----	------	-----	-----	-----	---------

The mixing procedure of the Eco-Bridge-Crete was as follows: first, the sand was homogenized in the mixer for 30 seconds. Then, coarse aggregates were added and mixed with sand for 2 minutes. While coarse and fine aggregates were mixed, fibers and half of the water mixed with the AEA were gradually introduced to the mixture. Afterward, the binder powder, including cement, fly ash, GGBS, and EA, was included and mixed for one minute. Subsequently, half of the water mixed with the HRWR was added to the mixture for 4 minutes. At this step, the mixer was switched off for a two-minute rest. Finally, the concrete was mixed for 2 additional minutes.

The cast specimens were demolded after 24 hours. The samples were subjected to 6 days of moist curing, which was followed by drying in a chamber with standard curing condition suggested by ASTM C157 at a relative humidity of $50\% \pm 4\%$ and a temperature of 23 ± 2 °C.

Table 3 shows the mixture proportions of the prepared mixtures applied in Task I-A. The mixtures are denoted based on the contents of EA, SRA, and LWS. For example, the 5EA1SRA25LWS mixture refers to the mixture with EA used at a dosage of 5 % by mass of the binder, SRA dosage of 1%, by mass of the binder, and LWS content of 25%, by volume of total sand. The REF mixture refers to the reference mixture made without any EA, SRA, and LWS. For all the mixtures, a 0.5% fiber volume (TUF-Strand supermix 41) was used.

# Mix	Cement (kg/m ³)	Fly- ash (kg/m³)	GGBS (kg/m³)	Sand (kg/m³)	Agg. 1" (kg/m ³)	Agg. 3/8" (kg/m ³)	EA (%)	SRA (%)	LWS (%)	Fiber (%)
REF	157.5	122.5	70	744	650	465	0	0	0	0.5
5EA	157.5	122.5	70	744	650	465	5	0	0	0.5
10EA	157.5	122.5	70	744	650	465	10	0	0	0.5
5EA1SRA	157.5	122.5	70	744	650	465	5	1	0	0.5
5EA2SRA	157.5	122.5	70	744	650	465	5	2	0	0.5
10EA1SRA	157.5	122.5	70	744	650	465	10	1	0	0.5
10EA2SRA	157.5	122.5	70	744	650	465	10	2	0	0.5
5EA12.5LWS	157.5	122.5	70	651.5	650	465	5	0	12.5	0.5
5EA25LWS	157.5	122.5	70	558.6	650	465	5	0	25	0.5
10EA12.5LWS	157.5	122.5	70	651.5	650	465	10	0	12.5	0.5
10EA25LWS	157.5	122.5	70	558.6	650	465	10	0	25	0.5
5EA1SRA12.5LWS	157.5	122.5	70	651.5	650	465	5	1	12.5	0.5
10EA1SRA12.5LWS	157.5	122.5	70	651.5	650	465	10	1	12.5	0.5
5EA2SRA12.5LWS	157.5	122.5	70	651.5	650	465	5	2	12.5	0.5
5EA2SRA25LWS	157.5	122.5	70	558.6	650	465	5	2	25	0.5
10EA1SRA25LWS	157.5	122.5	70	558.6	650	465	10	1	25	0.5
10EA2SRA25LWS	157.5	122.5	70	558.6	650	465	10	2	25	0.5

 Table 3. Mixture proportions of Eco-Bridge-Crete (Task I-A)

2.1.2 Fresh Properties

Table 4 shows the fresh properties of the tested Eco-Bridge-Crete mixtures prepared in Task I-A. The slump values varied between 95 and 160 mm. The fresh concrete temperature, air content, and unit weight values of the mixtures were 20° C, $3\% \pm 1\%$, and 2347 and 2465 kg/m^3 , respectively.

# Miv	Slump	Temperature	Air content	Unit weight
	(mm)	(°C)	%	(kg/m³)
REF	140	20	3.5	2348
5EA	160	21	2.0	2465
10EA	160	21	2.3	2468
5EA1SRA	120	21	3.5	2400
5EA2SRA	120	20	3.0	2448
10EA1SRA	150	21	2.0	2460
10EA2SRA	160	21	2.5	2456
5EA12.5LWS	150	29*	3.5	2465
5EA25LWS	95	21	4.0	2347
10EA12.5LWS	160	31*	3.0	2398
10EA25LWS	150	30*	3.0	2390
5EA1SRA12.5LWS	160	-	2.5	2465
10EA1SRA12.5LWS	150	-	2.5	2431
5EA2SRA12.5LWS	160	32*	2.0	2465
5EA2SRA25LWS	140	31*	2.0	2432
10EA1SRA25LWS	140	21	2.5	2432
10EA2SRA25LWS	155	21	2.0	2421

Table 4. Fresh properties of the investigated Eco-Bridge-Crete mixtures

*Temperature was high in a couple of cases.

2.2.3 Compressive strength results

The compressive strength tests were conducted on 100 x 200 mm (4"x8") cylinders as per ASTM C39. **Table 5** shows the compressive strength results of the Eco-Bridge-Crete samples tested at 28 and 56 days of age (7 days moist curing and air curing afterward). The results indicate that the optimum amount of EA was 5%, since using 5% and 10% EA increased the compressive strength by about 13% and 8% for 5EA and 10EA mixtures, respectively. The same trend was observed when a binary combination of EA and SRA employed at relatively low and high contents of EA was applied. The highest compressive strength was obtained for the 10EA1SRA25LWS mixture, and the 10EA2SRA mixture showed the lowest compressive strength. The results showed that binary system of EA-SRA did not improve compressive strength; however, EA-LWS system enhanced the compressive strength by about 13%. This can be due to the internal curing provided by the LWS, which provided internal curing water to the concrete matrix and extended the hydration process of the binder.

	28-d	Δνα	COV	56-d	Δνα	COV
Mix #	compressive	(MPa)	(%)	compressive	(MPa)	(%)
	strength (MPa)	()	(/0)	strength (MPa)	()	(70)
	48.3			53.7		
REF	49.3	49.0	1.0	50.3	52.0	2.7
	49.4			52.1		
	56.6			57.7		
5EA	56.7	58.0	2.9	61.2	59.0	2.9
	60.2			_*		
	52.2			55.4		
10EA	53.3	53.0	1.2	55.4	56.0	1.1
	53.6			56.7		
	50.7			55.8		
5EA1SRA	52.4	48.0	9.1	54.6	56.0	1.3
	42.3			56.4		
	52.1			59.8		
5EA2SRA	50.6	50.0	0.7	55.5	58.0	3.2
	54.1	52.0	Z.1	58.9		
	48.0			53.1		
10EA1SRA	52.5	50.0	3.7	55.7	54.0	2.1
IUEATORA	50.5			53.5		
	48.1			52.0		
10EA2SRA	48.4	47 0		51.1	52.0	1.0
	46.1		2.2	52.4		
	55.5			56.0		
5EA12 5I WS	56.0	56.0	05	60.5	57.0	40
JEATZ.JEWO	56.2	00.0	0.0	55.4	07.0	1.0
	51.1			58.0		
5EA25I W/S	59.5	55.0	63	58.0	59.0	1.8
JEAZJEWO	54.4	55.0	0.5	60.2	00.0	1.0
	57.2			55.6		
	58.0	57.0	25	54.0	56.0	20
IUEAIZ.JLW3	56.9	57.0	2.5	57.0	30.0	2.9
	53.4			50.0		
	53.5 57.5	56.0	2.0	59.2	50.0	10
IUEA25LWS	57.5	0.00	3.0	0.80	59.0	1.2
	50.1			60.3		
	60.6	50.0	0.7	64.6	04.0	0.7
5EA1SRA12.5LWS	59.4	59.0	2.7	63.6	64.0	0.7
	56.8			63.7		
	55.3			60.4	0	
10EA1SRA12.5LWS	55.0	55.0	0.23	56.1	57.0	4.5
	55.2			54.2		
	46.9			55.5		
5EA2SRA12.5LWS	51.4	50.0	4.8	55.2	56.0	0.6
	52.5			56.0		
	51.6			53.5		
5EA2SRA25LWS	55.1	54.0	2.8	57.5	56.0	3.0
	54.3			56.1		
	60.4			64.5		
10EA1SRA25LWS	61.1	61.0	0.5	68.4	66.0	2.9
	60.9	1		64.2	1	
10EA2SRA25LWS	56.2	57.0	1.6	62.3		

Table 5. Compressive strength results of Eco-Bridge-Crete mixtures at 28 and 56 days

57.5		61.8	62.0	0.9
58.4		60.9		

*denotes discarded results to maintain the coefficient of variation (COV) within an accepted range

2.2.4. Drying shrinkage

The drying shrinkage test was conducted on 75x75x285 mm (11.25"x3"x3") samples, according to ASTM C157. **Figure 1** compares the shrinkage results of the investigated samples containing EA, and the binary combination of EA and LWS with the reference concrete. It can be seen from **Figure 1** that the drying shrinkage was reduced with increasing EA. Additionally, for the given curing time, the total shrinkage results indicated a delay in the onset of shrinkage for the mixtures with LWS and EA. For the tested duration, the fiber-reinforced mixture with EA and LWS, i.e., the 10EA12.5LWS0.5FR mixture had the lowest shrinkage of 220 µm that was 30% less than the control mixture.

Figure 1. Shrinkage of fiber-reinforced Eco-Bridge-Crete reference mixture in comparison with mixtures containing EA and binary combination of EA and LWS

Figure 2 compares the shrinkage results of the investigated mixtures containing EA, and the binary combination of EA and SRA with the reference specimen. Again, it is shown that the drying shrinkage decreased upon using the hybrid system of EA and SRA. The mixtures made 5EA with and without SRA did not show significant expansion (at first 7 days). However, they reduced the drying shrinkage (11% to 38%) compared to the reference mixture. The mixtures prepared with 10EA with SRA (both 1SRA and 2SRA) increased the expansion significantly (67% to 120%). These mixtures also reduced considerably the drying shrinkage (around 42%). The general conclusion which is valid for all the mixtures is the significant effect of the shrinkage mitigating admixtures on drying shrinkage. This effect was more visible when a combination of such admixtures, such as EA and SRA are used at relatively higher contents. In this case, appropriate expansion, as well as slight shrinkage was observed.

Among the mixtures with binary systems of EA and LWS or EA and SRA, the minimum shrinkage after 98 days was associated with 10EA12.5LWS0.5FR mixture (220 μ m/m), which was about 30% less than the control mixtures' shrinkage. However, the maximum shrinkage was recorded for 10EA25LWS0.5FR (342 μ m/m), which was about 9% more than the control mixtures' shrinkage.

Figure 2. Shrinkage of fiber-reinforced Eco-Bridge-Crete reference mixture in comparison with mixtures containing EA and binary combination of EA and SRA

2. 2 Task I-B: Optimization of fiber characteristics for crack resistance of Eco-Bridge-Crete (70% completed)

The objective of Task I-B is to optimize the fiber characteristics for the crack resistance of Eco-Bridge-Crete. In Task I-B, three optimum mixtures from Task I-A were selected based on the drying shrinkage and compressive strength results of the 17 Eco-Bridge-Crete mixtures. These mixtures were, namely the 10EA, 5EA0.5SRA, and 5EA25LWS mixtures that were selected to investigate the performance of different types of fibers on fresh properties, compressive and flexural strengths, modulus of elasticity, as well as drying shrinkage, restrained expansion, restrained shrinkage, and restrained plastic shrinkage. The fibers include the PSI hooked end steel fiber (C6560), TUF-Strand SF-2" macro synthetic fiber and TUF-Strand MaxTen-2" macro synthetic fiber. Two contents fibers of 0.25% and 0.5% were employed in the selected mixtures. **Table 6** provides the detailed experimental program of Task I-B carried out on Eco-Bridge-Crete. In this reporting period, a total of 180 cylindrical specimens 100x100x410 mm (4"x4"x14"), and 36 drying shrinkage specimens 75x75x285 mm (11.25"x3"x3") for the three optimized Eco-Bridge-Crete mixtures were cast.

Concrete property	No. of Specimens	Test
	*	Unit weight (ASTM C 138)
Workability	*	Air vol. (ASTM C 173)
_	*	Slump
Stability	*	Bleeding (ASTM C 232)
Mashaniaal	108	Compressive strength, N=6 (ASTM C 39), 28, 56 days
nechanical	72	Modulus of elasticity, N=4 (ASTM C 469), 3, 56 days
properties	36	Flexural strength, N=2 (ASTM C 1609), 56 days
	36	Drying shrinkage, N=2 (ASTM C 157)
Crack	36	Restrained expansion (N=2) (ASTM C806)
resistance	18	Restrained Shrinkage (N=2) (ASTM C 1581)*
	18	Restrained plastic shrinkage (N=2) (ASTM C 1579)*
Total	324	

Table 6. Experimental program of Task I-B, Eco-Bridge-Crete

Table 7 shows the proportions of the total 18 mixtures prepared in Task I-B. The (M), (S), and (C) values in the figures and tables denote the use of the TUF-Strand MaxTen-2, macro synthetic fiber, TUF-Strand SF-2^{*''*} macro synthetic fibers, as well as the PSI hooked end steel fiber (C6560), respectively. For example, the 5EA0.5SRA0.25FR (MAXTEN) mixture refers to the mixture with 5 % EA, 0.5% SRA, and 0.25% of the TUF-Strand MaxTen-2^{*''*} macro synthetic fiber.

# Mix	Cement (kg/m ³)	Fly- ash (kg/m³)	Slag (kg/m³)	Sand (kg/m³)	Agg. 1" (kg/m ³)	Agg. 3/8" (kg/m³)	EA (%)	SRA (%)	LWS (%)	Fiber (%)
10EA0.5FR (M)	142	110	63	760	638	457	10	0	0	0.5
10EA0.25FR (M)	142	110	63	760	644	461	10	0	0	0.25
10EA0.5FR (S)	142	110	63	760	638	457	10	0	0	0.5
10EA0.25FR (S)	142	110	63	760	644	461	10	0	0	0.25
10EA0.35FR (C)	142	110	63	760	642	459	10	0	0	0.35
10EA0.17FR (C)	142	110	63	760	646	462	10	0	0	0.17
5EA0.5SRA0.5FR (M)	150	116	66.5	760	638	457	5	0.5	0	0.5
5EA0.5SRA0.25FR (M)	150	116	66.5	760	644	461	5	0.5	0	0.25
5EA0.5SRA0.5FR (S)	150	116	66.5	760	638	457	5	0.5	0	0.5
5EA0.5SRA0.25FR (S)	150	116	66.5	760	644	461	5	0.5	0	0.25
5EA0.5SRA0.35FR (C)	150	116	66.5	760	642	459	5	0.5	0	0.35
5EA0.5SRA0.17FR (C)	150	116	66.5	760	646	462	5	0.5	0	0.17
5EA25LWS0.5FR (M)	150	116	66.5	570	637	456	5	0	25	0.5
5EA25LWS0.25FR (M)	150	116	66.5	570	644	460	5	0	25	0.25
5EA25LWS0.5FR (S)	150	116	66.5	570	637	456	5	0	25	0.5
5EA25LWS0.25FR (S)	150	116	66.5	570	644	460	5	0	25	0.25
5EA25LWS0.35FR (C)	150	116	66.5	570	641	459	5	0	25	0.35
5EA25LWS0.17FR (C)	150	116	66.5	570	646	462	5	0	25	0.17

Table 7. Mixture proportions of 18 optimized Eco-Bridge-Crete (Task I-B)

2.2.1 Fresh Properties

Table 8 shows the fresh properties of the Eco-Bridge-Crete mixtures tested in Task I-B. The slump values, temperature, air content, and unit weight values ranged between 135 and 210 mm, 17° C and 23° C, $5\% \pm 1.5\%$, and 2249 and 2423 kg/m³, respectively.

# Mix	Slump (mm)	Temperature (°C)	Air content (%)	Unit wt. (kg/m³)	Bleeding
10EA0.5FR (M)	135	23	6.0	2330	NB*
10EA0.25FR (M)	165	23	6.5	2323	NB
10EA0.5FR (S)	175	23	6.4	2265	NB
10EA0.25FR (S)	170	23	6.0	2321	NB
10EA0.35FR (C)	200	23	5.8	2295	NB
10EA0.17FR (C)	210	21	4.8	2285	NB
5EA0.5SRA0.5FR (M)	180	23	3.6	2391	NB
5EA0.5SRA0.25FR (M)	200	23	6.0	2307	NB
5EA0.5SRA0.5FR (S)	160	22	4.5	2355	NB
5EA0.5SRA0.25FR (S)	195	22	6.4	2274	NB
5EA0.5SRA0.35FR (C)	195	21	4.2	2423	NB
5EA0.5SRA0.17FR (C)	210	19	5.0	2373	NB
5EA25LWS0.5FR (M)	175	19	4.9	2285	NB
5EA25LWS0.25FR (M)	205	19	5.3	2249	NB
5EA25LWS0.5FR (S)	155	19	4.7	2307	NB
5EA25LWS0.25FR (S)	195	19	5.2	2258	NB
5EA25LWS0.35FR (C)	210	17	5.6	2309	NB
5EA25LWS0.17FR (C)	195	20	4.9	2335	NB

Table 8. Fresh properties of the 18 optimized Eco-Bridge-Crete mixtures

*NB: No Bleeding

2.2.2. Compressive strength results

Table 9 represents the compressive strength results of the investigated mixtures for Task I-B. Higher contents of synthetic fibers improved compressive strength; however, increasing the steel fiber volume beyond 0.17% did not enhance compressive strength significantly. The highest strength was obtained for samples with the hybrid system of 5EA0.5SRA mixture with 0.35% PSI hooked end steel fiber (C6560 mixture), while the lowest compressive strength was recorded for 5EA0.5SRA mixture with 0.25% TUF-Strand SF-2" macro synthetic fiber.

Mix #	28-d compressive	Avg. (MPa)	COV (%)	56-d compressive	Avg. (MPa)	COV (%)
	Strength (MPa)			strength,(WPa)		
	51.2	51.0	0.4	51 1	52.0	3.2
IDEAU.SFR (M)	50.8	51.0	0.4	50.2	52.0	5.2
	30.8 44.8			43.0		
	44.0	45.0	11	43.0	46.0	51
	46.0	40.0	1.1	45.7	40.0	0.1
	40.0			46.7		
10EA0 5ER (S)	45.7	45.0	10	46.8	47.0	0.2
	44.7	40.0	1.0	46.9	17.0	0.2
	43.8			46.8		
10EA0 25ER (S)	44.8	44 0	11	46.4	46.0	0.6
	43.8	11.0		46.1	10.0	0.0
	43.2			42.6		
10EA0.35ER (C)	40.7	42.0	2.5	40.9	42.0	2.2
	42.6		2.0	43.1		
	43.5			45.4		
10EA0 17ER (C)	44.0	44 0	0.5	45.4	46.0	1.7
	44 0	11.0	0.0	47.1	10.0	
	49.6			51.6		
5EA0 5SRA0 5ER (M)	48.7	49.0	10	52.0	52.0	0.4
	48.5	10.0		51.6	00	••••
	43.5			43.8		
5EA0 5SRA0 25ER (M)	41.2	42.0	22	46.2	45.0	2.2
	42.5			45.1		
	47.7			52.6		
5EA0.5SRA0.5FR (S)	49.2	49.0	1.8	50.9	52.0	1.4
	49.8	10.0		52.0		
	35.9			38.4		
5EA0.5SRA0.25FR (S)	36.9	37.0	1.4	40.6	40.0	2.3
	37.1			39.8		
	50.7			53.0		
5EA0.5SRA0.35FR (C)	53.4	52.0	2.2	55.5	55.0	2.3
	51.6			55.8		
	52.0			54.7		
5EA0.5SRA0.17FR (C)	53.6	53.0	1.2	54.3	54.0	0.3
	52.9			54.4		
	43.1			-		
5EA25LWS0.5FR (M)	44.5	44.0	1.3	-	-*	-
	44.1			-		
	39.2			-		
5EA25LWS0.25FR (M)	37.7	39.0	2.2	-	-	-
	39.7			-		
	46.9			-		
5EA25LWS0.5FR (S)	47.3	47.0	1.3	-	-	-
	45.9			-		
	38.4			-		
5EA25LWS0.25FR (S)	39.2	39.0	1.2		-	-
	39.5			-		
	45.2	45.0	2.9	-	-	-

 Table 9. Compressive strength of Eco-Bridge-Crete mixtures at 28 and 56 days

5EA25LWS0.35FR (C)	46.7			-		
	43.5			-		
	44.6			-		
5EA25LWS0.17FR (C)	44.6	44.0	3.0	-	-	-
	41.8			-		

* (-) Denotes samples that will be tested in the next reporting period

2.2.3. Modulus of elasticity results

Table 10 provides the result of the modulus of elasticity for the optimized Eco-Bridge-Crete mixtures at 3 and 56 days. The results show that the highest modulus of elasticity was obtained for the 5EA0.5SRA0.35FR(C) mixture, which conforms with the compressive test results. However, the lowest modulus of elasticity was recorded for the 5EA25LWS0.5FR(M) mixture, which incorporated 0.5% TUF-Strand MaxTen-2 macro synthetic fiber.

Mix #	3-d MOE (GPa)	Avg. (GPa)	COV (%)	56-d MOE (GPa)	Avg. (GPa)	COV (%)
10EA0.5FR (M)	27.6	29.0	5.8	40.3	41.0	2.5
	31.0			42.4		
10EA0.25FR (M)	46.2	47.0	-	40.0	41.0	1.2
	-			41.0		
	30.7	33.0	5.8	37.6	38.0	0.0
	34.5			38.3		0.9
10EA0 25EP S)	33.1	22.0		38.3	37.0	2.4
10EA0.25FR 3)	-	55.0	-	36.5		
	30.0	28.0	6.2	33.8	35.0	4.4
10EA0.331 R (C)	26.5			36.9		
10EA0.17FR (C)	30.7	31.0	-	35.9	37.0	2.7
	-			37.9		
	34.8	35.0	-	39.9	40.0	0
	-			39.9		
5EA0 5SRA0 25ER (M)	28.3	27.0	4.4	39.6	37.0	8.5
5EA0.55RA0.25FR (IVI)	25.9			33.4		
5EA0.5SRA0.5FR (S)	26.7	27.0	-	29.3	31.0	6.5
	-			33.4		
5EA0.5SRA0.25FR (S)	24.1	25.0	1.5	34.5	36.0	3.8
	23.4			37.2		
5EA0.5SRA0.35FR (C)	31.4	34.0	6.7	44.1	45.0	0.0
	35.9			44.8		0.0

Table 10. Modulus of Elasticity for Eco-Bridge-Crete mixtures at 3 and 56 days

5EA0 5SBA0 17EB (C)	36.5	40.0	7.0	42.8	44.0	1.9
5EAU.55RAU. 17FR (C)	42.8	40.0	7.9	44.5	44.0	
	27.6	20.0		21.7	21.0	3.3
JEAZJEW SU.JFK (W)	-	20.0	-	20.3	21.0	
	21.4	21.0	2.6	-	-	-
5EA25LWS0.25FR (M)	20.3			-		
	27.9	27.0	4.5	-		-
JEA2520050.5FK (5)	25.5	27.0	4.5	-	-	
5EA25LWS0.25FR (S)	31.4	31.0	1 1	-		
	30.7		1.1	-		-
	27.9	25.0	10.0	-		-
3EA23EW30.33FR (C)	22.4	23.0	10.9	-	-	
5EA25LWS0.17FR (C)	23.1	23.4	0.3	-		
	23.8			-		-

(-) Denotes samples that will be tested in the next reporting period

2.2.4. Drying shrinkage

The drying shrinkage test was conducted on 75x75x285 mm (11.25"x3"x3") samples, according to ASTM C157. **Figure 3** depicts the shrinkage of the 10EA mixtures containing various types of fibers. The maximum 7-day expansion of 564 μ m/m was obtained when the hybrid system of 10EA0.25FR mixture and macro synthetic fiber (TUF-Strand MaxTen-2) were incorporated. Moreover, the maximum dying shrinkage, after 7-day moist curing up to 56 days was measured equal to -387 μ m/m, which was associated with 10EA0.25FR mixture with macro synthetic fiber (TUF-Strand SF-2). The minimum length change (228 μ m/m) after 7 days was achieved by 10EA0.17FR mixture which incorporated steel fiber (PSI hooked end steel fiber (C6560). The results indicated the more significant effect of the steel fiber on inhibiting the length change compared to the synthetic fibers.

Figures 4 and **5** show the shrinkage of the 5EA0.5SRA and 5EA25LWS mixtures containing different types of fibers. The minimum drying shrinkage for the testing duration (56 days for the 5EA0.5SRA mixture and 28 days for the 5EA25LWS mixture) was obtained by using 0.25% of the macro synthetic fiber (TUF-Strand SF-2). These results highlight the outweighing performance of this type of synthetic fiber against the TUF-Strand MaxTen-2 macro synthetic fiber. The overall results imply that the effect of the two contents of the fibers on shrinkage was not significant on drying shrinkage. Therefore a lower fiber content may be applied to properly restrain the length change.

Figure 3. Shrinkage of the 10EA mixture including different types of fibers

Figure 4. Shrinkage of the 5EA0.5SRA mixture including different types of fibers

Figure 5. Shrinkage of the 5EA25LWS mixture including different types of fibers

Next progress report due:

This project is a still underway with the other sponsor Euclid Chemical, and the final results will be published at the end of that period. The final report will uploaded on the RE-CAST project website at:

https://recast.mst.edu/projects/enhancedperformanceoffrcforconstruction/

The remaining portion of the work is scheduled to be completed by 7/30/2020.